Network analysis in psychological research with application and interpretation of R software

Document Type : Original Article

Author

Department of Psychology, Tarbiat Modares University, Tehran, Iran.

Abstract

Network analysis is an advanced statistical and graphical method which visualizes the relationship between multiple variables. The purpose of this research is to describe the analysis of computational psychological networks. Psychological network analysis helps researchers find the most important variables and relationships in a complex system. The latest estimation tools included accuracy using Bootstrap method, the degree of stability of focal indices, linkage comparison in psychological networks, and estimated indices. In addition, two new statistical methods called stationary correlation coefficient and the bootstrapped difference test were presented to compare edge-weights difference and focal indices. The statistical population of the research included 368 (120 male and 248 female) students of Tehran universities in the academic year of 2019-20. Then the anxiety of participants was measured. Network analysis using R showed that nodes 3, 6 and 11 are the most important nodes and the relationships between nodes 12-18 and 17-18 had the strongest positive relationships. Bootstrap method showed that the parameters and focal indicators of the network provide the correct estimation. The practical and interpretive steps of the mentioned theoretical foundations were presented in practical formats with anxiety data using R statistical software. The design of this article is based on theoretical and practical implications

Keywords


1- Finegood DT, Merth TDN, Rutter H.  Implications of the foresight obesity system map for solutions to childhood obesity. Obesity, 2010;18(Supplement1): S13–S16
2- Epskamp S, Maris GK, Waldorp LJ, Borsboom D.Network psychometrics.2016; arXiv preprint arXiv:160902818.
3- Epskamp S, Waldorp LJ, Mõttus R, Borsboom D. The Gaussian graphical model in cross-sectional and time-series data. Multivariate Behavioral Research.2018;53(4):453-80. https://doi.org/10.1080/00273171.2018. 1454823.
4- Borsboom D, Cramer AOJ. Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology.2013; 9: 91 –121. doi:10.1146/annurevclinpsy-050212-185608
5- Fried EI. R tutorial: how to identify communities of items in networks. Retrieved from http://psych-networks.com/r-tutorial-identify-communities-items-networks.2016.
6- Fried EI, Cramer AOJ. Moving forward: Challenges and directions for psychopathological network theory and methodology. Perspectives on Psychological Science.2017; 12(6): 999–1020. doi:10.17605/OSF.IO/BNEK
 7- Forbes MK, Wright AGC, Markon KE, Krueger RF. Evidence that psychopathology symptom networks have limited replicability. Journal of Abnormal Psychology.2017; 126 (7): 969–988. doi:10.1037/abn0000276
8- Watts DJ, Strogatz SH. Collective dynamics of “small-world” networks. Nature.1998; 393 (6684): 440–442. doi:10.1038/30918
9- Pearl J. Causality: Models, reasoning, and inference. New York, NY: Cambridge University Press;2003.
10- Epskamp S, van Borkulo CD, van der Veen MN, Servaas MN., Isvoranu AM, Riese H, Cramer AOJ. Personalized network modeling in psychopathology: The importance of contemporaneous and temporal connections. Clinical Psychological Science.2018; 6(3): 416–427. doi:10.1177/2167702617744325.
11- Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology.1999;10: 37 –48.
12- Bentler PM, Satorra A.  Testing model nesting and equivalence. Psychological Methods.2010; 15(2): 111–123. doi:10.1037/a0019625.
13- Fried EI, Cramer AOJ.  Moving forward: Challenges and directions for psychopathological network theory and methodology. Perspectives on Psychological Science.2017;12(6): 999–1020.
14- Lauritzen SL. Graphical models. Oxford, UK: Clarendon Press;1996.
15- vanBorkulo CD, Boschloo L, Borsboom D, Pennin BWJH,Waldorp LJ,Schoevers RA. Association of symptom network structure with the course of depression. JAMA Psychiatry.2015; 72(12): 1219–1226. doi:10.1001/jamapsychiatry.2015.2079
  .16- فراهانی ح.مقایسه رگرسیون خطی و الگوریتم‌های رگرسیون انقباضی (ستیغی، لسو و الستیک شبکه‌ای) با استفاده از داده‌های بیماران استرس‌پس‌از‌سانحه،مجله پژوهش های کاربردی روانشناختی. ;1399.  ِ۳(۱۱): 193-206.
17- Chen J, Chen Z. Extended Bayesian information criteria for model selection with large model spaces. Biometrika.2007; 95(3): 759–771. doi:10.1093/biomet/asn034
18- Newman M. Networks. Oxford: Oxford University Press;2018