The Effect of transcranial Direct Current Stimulation on the Cognitive Flexibility and Memory Span in Patients suffering from Temporal Lobe Epilepsy

Document Type : Original Article

Author

Abstract

Epilepsy is a neurological and chronic disorder that affects the central nervous system. This disorder has negative effects on cognitive abilities. The purpose of the current study was to evaluate the effectiveness of transcranial direct current stimulation on cognitive flexibility and memory span in patients suffering from epilepsy in the temporal lobe.
The present study had a semi-experimental design including a pre and post-test, and performed in two experimental and control groups. The sample consists of 30 patients with epilepsy who referred for treatment to private health centers in Urmia. Cognitive abilities were measured via Cognitive Flexibility questionnaire and Wechsler Numerical Memory Scale. After the pretest, 15 subjects were randomly assigned to the experimental group and 15 subjects were placed in the control group. Patients in the experimental group were given transcranial direct current stimulation for 10 sessions in which a current with 1.5 mA and for 20 minutes. Anode electrode was placed in the F3 region and cathode electrode in F4. Then posttest was conducted for both groups and data were analyzed by multivariate covariance analysis.
Results showed that there were significant differences between groups in terms of cognitive flexibility and memory span. This means that transcranial direct current stimulation can improve cognitive flexibility and memory span in patients with temporal lobe epilepsy.
The results demonstrated that transcranial direct current stimulation could be used as an effective intervention to improve cognitive flexibility and working memory for patients with epilepsy so physicians and psychologists who are active in this field can use this method, along with other interventions to solve cognitive problems of these patients.

Keywords


1-   Alexopoulos, A. V. (2013). Pharmacoresistant epilepsy: Definition and explanation. Epileptology, 1(1), 38–42.
2-   Manford, M. (2017). Recent advances in epilepsy. Journal of Neurology, 264(8), 1811–1824.
3-   Fisher, R. S., Boas, W. V. E., Blume, W., Elger, C., Genton, P., Lee, P., & Engel Jr, J. (2005). Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46(4), 470–472.
4-   McCormick, D. A., & Contreras, D. (2001). On the cellular and network bases of epileptic seizures. Annual Review of Physiology, 63(1), 815–846.
5-   Dekker, P. A., & Organization, W. H. (2002). Epilepsy: A manual for medical and clinical officers in Africa. Geneva: World Health Organization.
6-   Boling, W., Means, M., & Fletcher, A. (2018). Quality of life and stigma in epilepsy, perspectives from selected regions of Asia and Sub-Saharan Africa. Brain Sciences, 8(4), 59.
7- روشن‌نیا، سمیه، رضایی، فاطمه، قدم‌پور، عزت‌اله. (1397). اثربخشی درمان مبتنی بر تعهد و پذیرش بر تشنج و خودمدیریتی بیماران صرع مقاوم به درمان. روانشناسی بالینی و شخصیت. سال 16، شماره 2، صص ۲۹-۳۹.
8- محمدپور، سمانه، شاهی، مرجان، تاجیک‌زاده، فخری. (1396). اثربخشی شناخت درمانی مبتنی بر ذهن‌آگاهی بر خودارزشیابی مرکزی، بهزیستی روان‌شناختی و امیدواری بیماران مبتلا به صرع. روانشناسی بالینی و شخصیت. سال 15، شماره 2، صص 37-50.
9-   Han, P., Trinidad, B. J., & Shi, J. (2015). Hypocalcemia-induced seizure: demystifying the calcium paradox. ASN Neuro, 7(2), 1759091415578050.
10- Vezzani, A., Fujinami, R. S., White, H. S., Preux, P.-M., Blümcke, I., Sander, J. W., & Löscher, W. (2016). Infections, inflammation and epilepsy. Acta Neuropathologica, 131(2), 211–234.
11- Garcia, H. H., & Del Brutto, O. H. (2012). Infection and inflammation. In Handbook of clinical neurology (Vol. 108, pp. 601–620). Elsevier.
12- Englot, D. J., Chang, E. F., & Vecht, C. J. (2016). Epilepsy and brain tumors. In Handbook of clinical neurology (Vol. 134, pp. 267–285). Elsevier.
 13- Hughes, J., Devinsky, O., Feldmann, E., & Bromfield, E. (1993). Premonitory symptoms in epilepsy. Seizure, 2(3), 201–203.
14- Holmes, G. L. (2015). Cognitive impairment in epilepsy: the role of network abnormalities. Epileptic Disorders, 17(2), 101–116.
 15- Beletsky, V., & Mirsattari, S. M. (2012). Epilepsy, mental health disorder, or both? Epilepsy Research and Treatment.
16- Halgren, E., Stapleton, J., Domalski, P., Swartz, B. E., Delgado-Escueta, A. V, Walsh, G. O., … Ropchan, J. (1991). Memory dysfunction in epilepsy patients as a derangement of normal physiology.
17- Van Rijckevorsel, K. (2006). Cognitive problems related to epilepsy syndromes, especially malignant epilepsies. Seizure, 15(4), 227–234.
18- Hermann, B., & Seidenberg, M. (2007). Epilepsy and cognition. Epilepsy Currents, 7(1), 1–6.
19- Hermann, B., Jones, J., Sheth, R., Dow, C., Koehn, M., & Seidenberg, M. (2006). Children with new-onset epilepsy: neuropsychological status and brain structure. Brain, 129(10), 2609–2619.
20- Thompson, P. J., & Corcoran, R. (1992). Everyday memory failures in people with epilepsy. Epilepsia, 33, S18-20.
21- Gallassi, R. (2006). Epileptic amnesic syndrome: an update and further considerations. Epilepsia, 47, 103–105.
22- Ponds, R. W. H. M., & Hendriks, M. (2006). Cognitive rehabilitation of memory problems in patients with epilepsy. Seizure, 15(4), 267–273.
 23- Ramos, F. O., Carreiro, L. R. R., Scorza, F. A., & Cysneiros, R. M. (2016). Impaired executive functions in experimental model of temporal lobe epilepsy. Arquivos de Neuro-Psiquiatria, 74(6), 470–477.
24- Canas, J., Quesada, J., Antolí, A., & Fajardo, I. (2003). Cognitive flexibility and adaptability to environmental changes in dynamic complex problem-solving tasks. Ergonomics, 46(5), 482–501.
25- Galioto, R., Tremont, G., Blum, A. S., LaFrance Jr, W. C., Crook, C. L., & Davis, J. D. (2016). Depressive symptoms contribute to executive deficits in temporal lobe epilepsy. The Journal of Neuropsychiatry and Clinical Neurosciences, 29(2), 135–141.
26- Stretton, J., & Thompson, P. J. (2012). Frontal lobe function in temporal lobe epilepsy. Epilepsy Research, 98(1), 1–13.
27- Blair, M., Ferreria, G., Gill, S., King, R., Hanna, J., Deluca, D., Smolewska, K. (2017). Dialectical Behavior Group Therapy is Feasible and Reduces Emotional Dysfunction in Multiple Sclerosis. International Journal of Group Psychotherapy, 67(4), 500–518.
28- Van den Akker, L. E., Beckerman, H., Collette, E. H., Eijssen, I. C. J. M., Dekker, J., & de Groot, V. (2016). Effectiveness of cognitive behavioral therapy for the treatment of fatigue in patients with multiple sclerosis: A systematic review and meta-analysis. Journal of Psychosomatic Research, 90, 33–42.
29- Hind, D., Cotter, J., Thake, A., Bradburn, M., Cooper, C., Isaac, C., & House, A. (2014). Cognitive behavioural therapy for the treatment of depression in people with multiple sclerosis: a systematic review and meta-analysis. BMC Psychiatry, 14(1), 5.
30- Pakenham, K. I., Scott, T., & Uccelli, M. M. (2018). Evaluation of Acceptance and Commitment Therapy Training for Psychologists Working with People with Multiple Sclerosis. International Journal of MS Care, 20(1), 44–48.
31- Simpson, R., Booth, J., Lawrence, M., Byrne, S., Mair, F., & Mercer, S. (2014). Mindfulness based interventions in multiple sclerosis-a systematic review. BMC Neurology, 14(1), 15.
32- Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 527(3), 633–639.
33- Terzuolo, C. A., & Bullock, T. H. (1956). Measurement of imposed voltage gradient adequate to modulate neuronal firing. Proceedings of the National Academy of Sciences of the United States of America, 42(9), 687.
34- Karvigh, S. A., Motamedi, M., Arzani, M., & Roshan, J. H. N. (2017). HD-tDCS in refractory lateral frontal lobe epilepsy patients. Seizure, 47, 74–80.
35- Del Felice, A., Magalini, A., & Masiero, S. (2015). Slow-oscillatory transcranial direct current stimulation modulates memory in temporal lobe epilepsy by altering sleep spindle generators: a possible rehabilitation tool. Brain Stimulation, 8(3), 567–573.
36- Ruf, S. P., Fallgatter, A. J., & Plewnia, C. (2017). Augmentation of working memory training by transcranial direct current stimulation (tDCS). Scientific Reports, 7(1), 876.
37- Cappon, D., Jahanshahi, M., & Bisiacchi, P. (2016). Value and efficacy of transcranial direct current stimulation in the cognitive rehabilitation: a critical review since 2000. Frontiers in Neuroscience, 10, 157.
38- Nejati, V., Salehinejad, M. A., Nitsche, M. A., Najian, A., & Javadi, A.-H. (2017). Transcranial direct current stimulation improves executive dysfunctions in ADHD: implications for inhibitory control, interference control, working memory, and cognitive flexibility. Journal of Attention Disorders, 1087054717730611.
39- De Paula, J. J., Querino, E. H. G., e Silva, M. C. V., Malloy-Diniz, L. F., Miranda, D. M., & Romano-Silva, M. A. (2017). Changes in fluid IQ after dorsolateral prefrontal cortex stimulation by tDCS is independent of changes in executive functioning. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 10(2), 414.
40- Trumbo, M. C., Matzen, L. E., Coffman, B. A., Hunter, M. A., Jones, A. P., Robinson, C. S. H., & Clark, V. P. (2016). Enhanced working memory performance via transcranial direct current stimulation: The possibility of near and far transfer. Neuropsychologia, 93, 85–96.
41- Liu, A., Devinsky, O., Bryant, A., Jefferson, A., Friedman, D., Shafi, M., … O’Connor, M. (2014). Efficacy of transcranial direct current stimulation on working memory and mood in patients with temporal lobe epilepsy (S43. 006). AAN Enterprises.
42- Jo, J. M., Kim, Y.-H., Ko, M.-H., Ohn, S. H., Joen, B., & Lee, K. H. (2009). Enhancing the working memory of stroke patients using tDCS. American Journal of Physical Medicine & Rehabilitation, 88(5), 404–409.
 43- Bystad, M., Grønli, O., Rasmussen, I. D., Gundersen, N., Nordvang, L., Wang-Iversen, H., & Aslaksen, P. M. (2016). Transcranial direct current stimulation as a memory enhancer in patients with Alzheimer’s disease: a randomized, placebo-controlled trial. Alzheimer’s Research & Therapy, 8(1), 13.
44- San-Juan, D., Morales-Quezada, L., Garduño, A. J. O., Alonso-Vanegas, M., González-Aragón, M. F., López, D. A. E., … Fregni, F. (2015). Transcranial direct current stimulation in epilepsy. Brain Stimulation, 8(3), 455–464.
 45- دلاور، علی. (1389). روش تحقیق در روانشناسی و علوم تربیتی. تهران: ویرایش.
46- Dennis, J. P., & Vander Wal, J. S. (2010). The cognitive flexibility inventory: Instrument development and estimates of reliability and validity. Cognitive Therapy and Research, 34(3), 241–253.
47- Shareh, H., Farmani, A., & Soltani, E. (2014). Investigating the reliability and validity of the cognitive flexibility inventory (CFI-I) among Iranian university students. PCP, 2 (1) :43-50
48-Groth-Marnat, G. (2009). Handbook of psychological assessment. John Wiley & Sons.
49-Anastasi, A. (1980). Psychological testing and privacy. Privacy: A Vanishing Value, 348–358.
50- ساعد، امید، روشن، رسول، مرادی، علیرضا. (1387). بررسی ویژگی‌های روان‌سنجی مقیاس حافظه وکسلر نسخه سوم (WMS-III) در دانشجویان . روانشناسی بالینی و شخصیت. سال 1، شماره 31، صص 57-70.
51- Kaplan, J. T., Gimbel, S. I., & Harris, S. (2016). Neural correlates of maintaining one’s political beliefs in the face of counterevidence. Scientific Reports, 6, 39589.
52- Elger, C. E., Helmstaedter, C., & Kurthen, M. (2004). Chronic epilepsy and cognition. The Lancet Neurology, 3(11), 663–672.
53-Sullivan, G. M., & Feinn, R. (2012). Using effect size—or why the P value is not enough. Journal of Graduate Medical Education, 4(3), 279–282.
54-Arul-Anandam, A. P., & Loo, C. (2009). Transcranial direct current stimulation: a new tool for the treatment of depression? Journal of Affective Disorders, 117(3), 137–145.
55- Zhao, H., Qiao, L., Fan, D., Zhang, S., Turel, O., Li, Y., He, Q. (2017). Modulation of brain activity with noninvasive transcranial direct current stimulation (tDCS): clinical applications and safety concerns. Frontiers in Psychology, 8, 685.
56- Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.
57- Schmid, T. (2005). Promoting health through creativity: an introduction. Promoting Health through Creativity: For Professionals in Health, Arts and Education.
58-Leite, J., Carvalho, S., Fregni, F., & Gonçalves, O. F. (2011). Task-specific effects of tDCS-induced cortical excitability changes on cognitive and motor sequence set shifting performance. PloS One, 6(9), e24140.
59- Yuan, P., & Raz, N. (2014). Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neuroscience & Biobehavioral Reviews, 42, 180–192.
60- Chun, M. M., & Turk-Browne, N. B. (2007). Interactions between attention and memory. Current Opinion in Neurobiology, 17(2), 177–184.
61- Peng, A., Kirkham, N. Z., & Mareschal, D. (2018). Information processes of task-switching and modality-shifting across development. PloS One, 13(6), e0198870.
62- Sotnikova, A., Soff, C., Tagliazucchi, E., Becker, K., & Siniatchkin, M. (2017). Transcranial direct current stimulation modulates neuronal networks in attention deficit hyperactivity disorder. Brain Topography, 30(5), 656–672.
63-Sarkis, R. A., Kaur, N., & Camprodon, J. A. (2014). Transcranial direct current stimulation (tDCS): modulation of executive function in health and disease. Current Behavioral Neuroscience Reports, 1(2), 74–85.
64- Fukai, M., Bunai, T., Hirosawa, T., Kikuchi, M., Ito, S., Minabe, Y., & Ouchi, Y. (2019). Endogenous dopamine release under transcranial direct-current stimulation governs enhanced attention: a study with positron emission tomography. Translational Psychiatry, 9(1), 115.
65-Plewnia, C., Zwissler, B., Längst, I., Maurer, B., Giel, K., & Krüger, R. (2013). Effects of transcranial direct current stimulation (tDCS) on executive functions: influence of COMT Val/Met polymorphism. Cortex, 49(7), 1801–1807.
66-Christopher, L., Marras, C., Duff-Canning, S., Koshimori, Y., Chen, R., Boileau, I., Rusjan, P. (2013). Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain, 137(2), 565–575.
67- Hone-Blanchet, A., Edden, R. A., & Fecteau, S. (2016). Online effects of transcranial direct current stimulation in real time on human prefrontal and striatal metabolites. Biological Psychiatry, 80(6), 432–438.
68- Jett, J. D., Bulin, S. E., Hatherall, L. C., McCartney, C. M., & Morilak, D. A. (2017). Deficits in cognitive flexibility induced by chronic unpredictable stress are associated with impaired glutamate neurotransmission in the rat medial prefrontal cortex. Neuroscience, 346, 284–297.
69- McEntee, W. J., & Crook, T. H. (1993). Glutamate: its role in learning, memory, and the aging brain. Psychopharmacology, 111(4), 391–401.
 70- Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. Journal of Neuroscience, 29(16), 5202–5206.
71- Marsman, A., Mandl, R. C. W., Klomp, D. W. J., Cahn, W., Kahn, R. S., Luijten, P. R., … Hilleke, E. (2017). Intelligence and brain efficiency: investigating the association between working memory performance, glutamate, and GABA. Frontiers in Psychiatry, 8, 154.
 72- Enomoto, T., Maric, T. T., & Floresco, S. B. (2011). Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia. Biological Psychiatry, 69(5), 432–441.