ارزیابی مدل تحلیل عاملی تائیدی بایفکتر از بعدپذیری و ارزش خرده - دامنه‌های مقیاس‌های روانشناختی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری روان‌شناسی تربیتی، مدرس دانشگاه فرهنگیان، پردیس ورامین، ورامین، ایران.

2 دانشیار گروه روان‌شناسی، واحد گرمسار، دانشگاه آزاد اسلامی، گرمسار، ایران.

چکیده

مقدمه: کاربرد روش‌­هایی مانند مدل­‌یابی معادله ساختاری (SEM) یا نظریة پرسش و پاسخ (IRT) برای عملیاتی‌سازی سازه‌­های روان‌شناختی، مستلزم بررسی مفروضه «استقلال موضعی» در داده­‌ها است. هدف از این پژوهش، ارزیابی بعدپذیری و ارزش افزوده خرده - دامنه‌­های مقیاس‌­های روان‌شناختی با استفاده از مدل تحلیل عاملی تأییدی بایفکتر بود.
روش: این مطالعه  از نوع مروری بود که پس از معرفی مدل تحلیل عاملی تأییدی بایفکتر، از بستة آماری BifactorIndicesCalculator در نرم‌افزار  R نسخة 3/3/4 برای ارزیابی بعدپذیری  و ارزش افزوده خرده - دامنه­های مقیاس­های روان‌شناختی استفاده شد. داده­ها از 512 نفر از دانشجویان دانشگاه آزاد اسلامی واحد گرمسار در سال تحصیلی 1402-1403 جمع‌آوری شدند.  این دانشجویان با روش نمونه‌­گیری در دسترس انتخاب شده و  به پرسش‌های مقیاس خوب زیستن یوسفی پاسخ دادند.
نتایج: اگر شاخص واریانس مشترک تبیین شده کل، کمتر از 60/0 باشد، مقیاس چند بعدی در نظر گرفته می‌شود و اگر 90/0 و بیشتر باشد، مقیاس به حد کفایت تک‌بعدی تلقی می‌شود. همچنین اگر دو شاخص واریانس مشترک تبیین شده کل و درصد همبستگی­های آلوده نشده‌، دستکم 70/0 باشد، مقیاس تک‌بعدی محسوب می‌شود. اگر شاخص واریانس مشترک تبیین شده کل حداقل 60/0 باشد، لازم است دو شاخص درصد همبستگی‌های آلوده نشده و ضریب امگا سلسله مراتبی نیز حداقل 70/0 باشند تا مقیاس به حد کفایت تک‌بعدی درنظر گرفته شود.
بحث و نتیجه‏‌گیری: با توجه به نتایج این مطالعه، پژوهشگران می­توانند از  مدل تحلیل عاملی تأییدی بایفکتر برای ارزیابی بعدپذیری و ارزش خرده دامنه‌­های مقیاس­‌های روان‌شناختی بهره ببرند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Bifactor Confirmatory Factor Analysis Model of Dimensionality and Value of Sub-Domains of Psychological Scale

نویسندگان [English]

  • Noorellah Yousefi 1
  • Alireza Pirkhaefi 2
1 Ph.D in Educational Psychology, Farhangian University Lecturer, Varamin Campus, Varamin, Iran.
2 Associate Professor, Department of Psychology, Garmsar Branch, Islamic Azad University, Garmsar, Iran.
چکیده [English]

 
Introduction: The application of methods such as Structural Equation Modeling (SEM) and Item Response Theory (IRT) for the operationalization of psychological constructs necessitates an examination of the assumption of "local independence" within the data. The objective of this research was to assess the dimensionality and additional value of the subdomains of psychological scales through the use of a bifactor confirmatory factor analysis model.
Method: This study employed a review methodology utilizing the bifactor confirmatory factor analysis model, implemented through the BifactorIndicesCalculator statistical package in R software version 4.3.3. The aim was to evaluate the dimensionality and added value of sub-domains of psychological scales. Data were collected from 512 students at the Islamic Azad University, Garmsar branch, during the 2022-2023 academic year. Participants were selected using an availability sampling method and completed the questions from Yousefi's Good Life Scale.
Results: If the total explained common variance index is less than 0.60, the scale is considered multidimensional. Conversely, if it is 0.90 or higher, the scale is deemed sufficiently unidimensional. Additionally, if both the total explained common variance index and the percentage of uncontaminated correlations are at least 0.70, the scale is also regarded as sufficiently unidimensional. Furthermore, if the total explained common variance index is at least 0.60, it is essential for both the percentage of uncontaminated correlations and the hierarchical omega coefficient to be a minimum of 0.70 for the scale to be classified as sufficiently unidimensional.
Discussion and conclusion: The results of the study indicate that researchers can utilize the bifactor confirmatory factor analysis model to assess the dimensionality and significance of the subdomains within psychological scales.
Extended Abstract
Introduction
Researchers employ methods such as Structural Equation Modeling (SEM) and Item Response Theory (IRT) to operationalize psychological constructs. To utilize Structural Equation Modeling (SEM) and Item Response Theory (IRT) estimates, researchers must contend with the assumption of "local independence, may not hold true in their data. If this assumption is violated, it can lead to uniqueness" or the emergence of "local dependence. result in inaccurate estimations of the underlying structure and yield misleading results from the scale. Recently, the use of the bifactor confirmatory factor analysis model to determine the dimensionality and added value of sub-domains in psychological scales has been emphasized by prominent methodologists. In a bifactor confirmatory factor analysis model, items load on both a general factor and a specific factor. Therefore, this model allows for the evaluation of dimensionality and the added value of scores from the sub-domains of the scales by partitioning the variance and covariance of the items with respect to the general factor, the covariance with the specific factor, and the variance associated with the specific factor of each item. This evaluation can be conducted using various important statistical indicators. The purpose of this research was to assess the dimensionality and added value of the sub-domains of psychological scales utilizing the bifactor confirmatory factor analysis model.
Method
This review study utilized books, articles, and theses with accessible full texts that were relevant to the bifactor confirmatory factor analysis method. In a bifactor confirmatory factor analysis model, valuable statistical indicators are derived that can significantly enhance psychometric analysis. These indicators include the omega coefficient, the omega coefficient of subscales, hierarchical omega factor, omega hierarchical subscale, explained common variance index, specific-dimension explained common variance (ECV), ECV of a specific factor with respect to itself, within-domain ECV, explained common variance-item index, percentage of uncontaminated correlations index, and average relative parameter bias index. To estimate the statistical indices of the bifactor confirmatory factor analysis model, the “BifactorIndicesCalculator” statistical package was utilized in R software version 4.3.3. This document provides instructions on how to use this statistical package in R, along with the cutoff points for the statistical indices of the bifactor confirmatory factor analysis model. These indices are essential for evaluating the dimensionality and added value of the sub-domains of psychological scales. The data were collected from 512 students (235 boys and 277 girls) at the Islamic Azad University of Garmsar branch during the academic year 2023-2024, who were selected using an available sampling method and completed Yousefi's Good Life Scale. For researchers who are not familiar with R software, the Dober Bifactor Indices Calculator, an Excel-based tool, is also introduced.
Results
The results indicated that if the scale adheres to a bifactor model based on the underlying theoretical foundations and the collected data, a total explained common variance (ECV) index of less than 0.60 suggests that the scale is multidimensional. Conversely, if the total explained common variance (ECV) index is 0.90 or higher, the scale is considered sufficiently unidimensional. If the total explained common variance (ECV) index falls between 0.60 and 0.90, the researcher should consider additional indicators to assess the dimensionality of the scale. Specifically, if the ECV index is at least 0.70, the percentage of uncontaminated correlations (PUC) must also be a minimum of 0.70 to ensure that the scale is sufficiently unidimensional. If the total explained common variance index is at least 0.60, the percentage of uncontaminated correlations (PUC) index and the hierarchical omega coefficient must each be at least 0.70 for the scale to be considered sufficiently unidimensional. If a researcher intends to utilize the scores from the sub-domains in a bifactor model, it is essential to make decisions based on the omega coefficients of the subscales. When the reliability of a sub-domain is low, specifically when the omega coefficient (ωS) is at least 0.60, a value of at least 0.45 for the Explained Common Variance (ECV) coefficient of the specific factor (ECVSS) is adequate. This indicates that the sub-domain has a good likelihood of providing significant added value beyond the total score (ωS ≥ 0.60 and ECVSS ≥ 0.45). For an average reliability coefficient (ωS ≥ 0.80), an ECVSS coefficient value of at least 0.30 is necessary for the subscale to have a strong likelihood of providing significant added value beyond the total score (ωS ≥ 0.80 and ECVSS ≥ 0.30). Also, when the reliability of the sub-domain is low, specifically when it is at least 0.60 (ωS ≥ 0.60), a minimum OmegaHS coefficient of 0.25 is sufficient for the sub-domains to have a good chance of providing high added value in relation to the total score (ωS ≥ 0.60 and ωHS ≥ 0.25). Conversely, for an average reliability coefficient (ωS ≤ 0.80), a minimum value of 0.20 is adequate for the sub-domains to have a good chance of delivering high added value in relation to the total score (ωS ≥ 0.80 and ωHS ≥ 0.20). If the obtained values of the explained common variance-item index (I-ECV) for each scale item exceed 0.80 or 0.85, the researcher can utilize these items to create a short, concise, and unidimensional tool.
Conclusion
If a researcher is examining the factor structure of a psychological scale that has a total score reflecting its underlying theoretical foundations—specifically, a general factor—it is essential to estimate the bifactor model in addition to evaluating the unidimensional confirmatory factor analysis (CFA) model, the CFA model of correlated traits, and the higher-order CFA model. When comparing these estimated models, researchers should not solely rely on the goodness-of-fit indices to select the final model. In other words, if the data collected by the scale adheres to a bifactor model and the goodness-of-fit indices for this model are optimal, albeit slightly lower than those of competing models, it is advisable for the researcher to choose the bifactor model as the final model. They should also utilize various statistical coefficients from the bifactor model to assess the psychometric properties of the scale. Researchers need to pay attention to this point when their final bifactor confirmatory factor analysis model has two sub-domains, and their intention is to estimate the reliability of each sub-domain in order to use the scores of each sub-domain, it is not possible to use the cut points presented in this article for them; That is, the researcher can use the cut points presented in this article to estimate the reliability and use the score of each sub-domain when the researcher's final bifactor model is at least three sub-domains. According to the results of the study, researchers can use the bifactor confirmatory factor analysis model to evaluate the dimensionality and value of the subdomains of psychological scales.
Ethical Considerations
Compliance with Ethical Guidelines: Compliance with ethical guidelines: In the current study, ethical considerations such as informing about the research objectives, obtaining informed consent and agreement to participate in the study, not forcing participants to participate in the study, keeping the participants' information confidential and maintaining confidentiality were observed.
Funding: The present study was carried out without any financial support from any particular organization.
Authors’ contribution: Both researchers were involved in drafting, rewriting and revising the article.
Conflict of interest: The authors of the article declare that they have no conflict of interest.
Acknowledgments: We hereby express our gratitude to all the dear ones who helped us in carrying out this study; We are especially grateful to the students of Islamic Azad University of Garmsar branch.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

کلیدواژه‌ها [English]

  • Scale Dimensions
  • Local Independence
  • Bifactor Model
  • Omega Reliability Coefficient
  • Explained Common Variance Index
  • Total Score
  • Sub-Scale Score
  •  

    • , A, Reise, SP., Haviland, MG. Evaluating bifactor models: Calculating and interpreting statistical indices. Psychological methods. 2016 Jun; 21(2): 137.

    https://doi.org/10.1037/met0000045

    • Dueber, DM., Toland, MD. A bifactor approach to subscore assessment. Psychological Methods. 2023 Feb; 28(1): 222.

    https://doi.org/10.1037/met0000459

    • Chen, FF., West, SG., Sousa, KH. A comparison of bifactor and second-order models of quality of life. Multivariate behavioral research. 2006 Jun 1; 41(2): 189-225.

    https://doi.org/10.1207/s15327906mbr4102_5

    • Hull, JG., Lehn, DA., Tedlie, JC. A general approach to testing multifaceted personality constructs. Journal of Personality and Social Psychology. 1991 Dec; 61(6): 932.

    https://doi.org/10.1037//0022-3514.61.6.932

    • Reise, SP., Moore TM, Haviland MG. Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores. Journal of personality assessment. 2010 Oct 19; 92(6): 544-59.

    https://doi.org/10.1080/00223891.2010.496477

    • Hoyle, RH., editor. Handbook of structural equation modeling. Guilford press; 2023.

    https://www.researchgate.net/publication/361861039_Handbook_of_Structural_Equation_Modeling

    • Bock, RD., Gibbons, RD. Item response theory. John Wiley & Sons; 2021 Jun 24.

    https://www.wiley.com/en-cn/Item+Response+Theory-p-9781119716686

    • Edwards, MC., Houts, CR., Cai, L. A diagnostic procedure to detect departures from local independence in item response theory models. Psychological methods. 2018 Mar; 23(1): 138.

    https://doi.org/10.1037/met0000121

    • Reise, SP. The rediscovery of bifactor measurement models. Multivariate behavioral research. 2012 Sep 1; 47(5): 667-96.

    https://doi.org/10.1080/00273171.2012.715555

    • Reise, SP., Scheines, R., Widaman, KF., Haviland, MG. Multidimensionality and structural coefficient bias in structural equation modeling: A bifactor perspective. Educational and psychological measurement. 2013 Feb; 73(1): 5-26.

    https://doi.org/10.1177/0013164412449831

    • DeMars, C. Item response theory. Oxford University Press; 2010 Apr 30.

    https://doi.org/10.1093/acprof:oso/9780195377033.001.0001

    • Cho, E. Interchangeability between factor analysis, logistic IRT, and normal ogive IRT. Frontiers in Psychology. 2023 Sep 25; 14: 1267219. https://doi.org/3389/fpsyg.2023.1267219
    • Camilli, G. "‌Origin of the scaling constant d= 1.7 in item response theory": Correction, 1995.

    https://doi.org/10.3102/10769986019003293

    • Reise, SP., Revicki, DA., editors. Handbook of item response theory modeling: Applications to typical performance assessment. Routledge; 2014 Nov 20. https://doi.org/10.4324/9781315736013
    • RP., The dimensionality of tests and items. British Journal of mathematical and statistical Psychology. 1981 May; 34(1): 100-17. https://doi.org/10.1177/01466216860100030
    • Hattie, J. Methodology review: assessing unidimensionality of tests and ltenls. Applied psychological measurement. 1985 Jun; 9(2):139-64. https://doi.org/10.1177/0146621685009002
    • Ackerman, TA. Unidimensional IRT calibration of compensatory and noncompensatory multidimensional items. Applied Psychological Measurement. 1989 Jun; 13(2): 113-27.

    https://hdl.handle.net/11299/107494

    • Zwick, WR., Velicer, WF. Comparison of five rules for determining the number of components to retain. Psychological bulletin. 1986 May; 99(3): 432.

    https://doi.org/10.1037/0033-2909.99.3.432

    • Reise, SP., Cook, KF., Moore, TM. Evaluating the impact of multidimensionality on unidimensional item response theory model parameters. InHandbook of item response theory modeling, 2014 Nov 20 (pp. 13-40). Routledge. https://doi.org/10.4324/9781315736013
    • Fraser, C., McDonald, R. P. NOHARM 3.0. 2003, Available at:

    http://people.niagaracollege.ca/cfraser/download

    • Zhang, J., Stout, W. The theoretical DETECT index of dimensionality and its application to approximate simple structure. Psychometrika. 1999 Jun; 64: 213-49.

    https://doi.org/10.1007/BF02294536

    • Dueber, DM. A bifactor approach to dimensionality assessment. Theses and Dissertations--Education Sciences. 59. 2020.

    https://doi.org/10.1037/met0000459

    • Leighton, EA. Investigating Bifactor Models and Fit Indices for Unidimensionality: An Illustration with Method Effects Due to Item Wording (Doctoral dissertation, University of South Carolina). https://scholarcommons.sc.edu/etd/7132?utm_source=scholarcommons.sc.edu%2Fetd%2F7132&utm_medium=PDF&utm_campaign=PDFCoverPages
    • Hattie, J., Krakowski, K., Jane Rogers, H., Swaminathan, H. An assessment of Stout's index of essential unidimensionality. Applied psychological measurement. 1996 Mar; 20(1): 1-4. https://doi.org/10.1177/014662169602000101
    • Jennrich, RI., Bentler, PM. Exploratory bi-factor analysis. Psychometrika. 2011 Oct; 76: 537-49. https://doi.org/1007/s11336-011-9218-4
    • Jung, S., Seo, DG., Park, J. Regularized exploratory bifactor analysis with small sample sizes. Frontiers in Psychology. 2020 Apr 9; 11: 503105. https://doi.org/3389/fpsyg.2020.00507
    • Quinn, HO. Bifactor models, explained common variance (ECV), and the usefulness of scores from unidimensional item response theory analyses.

     https://doi.org/10.17615/t6ff-a088

    • Yousefi, Noore, Pirkhaefi, Alireza., Barjali, Ahmad. Examining the psychometric properties of the complete mental health short form scale. Clinical Psychology and Personality, 2020; 18 (2): 129-144.

    https://doi.org/10.22070/cpap.2020.2945

    [In Persian]

    • Yousefi, Noorellah. Development and effectiveness of positive mental health model (based on creativity, life satisfaction, character strenghts and social support) on increasing positive psychological resources and reducing psychological harm. Dissertation for PhD, Islamic Azad University, Garmsar branch. [In Persian]
    • Rosseel, Y. lavaan: An R package for structural equation modeling. Journal of statistical software. 2012 May 24;48:1-36.

    https://doi.org/10.18637/jss.v048.i02

    • Dueber, DM. Package ‘BifactorIndicesCalculator‘, 2020.

    https://cran.r-project.org/web/packages/BifactorIndicesCalculator/BifactorIndicesCalculator.pdf

    • Canivez, GL. Bifactor modeling in construct validation of multifactored tests: Implications for understanding multidimensional constructs and test interpretation.

    https://www.ux1.eiu.edu/~cfglc/Adobe%20pdf/Publications-Papers/Canivez%20(2016)%20Bifactor%20Modeling.pdf

    • Raykov, T., Marcoulides, GA. Introduction to psychometric theory. Routledge; 2011 Jan 7.

    https://doi.org/10.4324/9780203841624

    • Bentler, PM. Alpha, dimension-free, and model-based internal consistency reliability. Psychometrika. 2009 Mar; 74(1): 137-43.

    https://doi.org/10.1007/s11336-008-9100-1

    • Floyd, FJ., Widaman, KF. Factor analysis in the development and refinement of clinical assessment instruments. Psychological assessment. 1995 Sep; 7(3): 286.

    https://doi.org/10.1037/1040-3590.7.3.286

    • Rodriguez, A., Reise, SP., Haviland, MG. Applying bifactor statistical indices in the evaluation of psychological measures. Journal of personality assessment. 2016 May 3; 98(3): 223-37 https://doi.org/1080/00223891.2015.1089249
    • Tabachnick, BG., Fidell, LS. Using Multivariate Statistics. Boston, MA: Pearso n Education. https://hisp.htmi.ch/pluginfile.php/77114/mod_resource/content/0/Using%20Multivariate%20Statistics%20%28Tabachnick%20and%20Fidell%29.pdf
    • Reise, SP., Kim, DS., Mansolf, M., Widaman, KF. Is the bifactor model a better model or is it just better at modeling implausible responses? Application of iteratively reweighted least squares to the Rosenberg Self-Esteem Scale. Multivariate behavioral research. 2016 Nov 1; 51(6): 818-38.

    https://doi.org/10.1080/00273171.2016.1243461

    • Thompson, B. Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington, DC. 2004; 10694(000): 3. https://doi.org/1037/10694-000
    • McDonald RP. Test theory: A unified treatment. psychology press; 2013 Jun 17.

    https://doi.org/10.4324/9781410601087

    • Canivez, GL. Construct validity of the WISC-IV with a referred sample: direct versus indirect hierarchical structures. School Psychology Quarterly. 2014 Mar; 29(1): 38.

    https://doi.org/10.1037/spq0000032

    • Gignac, GE. Higher-order models versus direct hierarchical models: g as superordinate or breadth factor?. Psychology Science. 2008; 50(1): 21.

    https://www.researchgate.net/publication/26514567

    • Gibbons, RD., Bock, RD., Hedeker, D., Weiss, DJ., Segawa, E., Bhaumik, DK., Kupfer, DJ., Frank, E., Grochocinski, VJ., Stover A. Full-information item bifactor analysis of graded response data. Applied Psychological Measurement. 2007 Jan; 31(1): 4-19.

    https://doi.org/10.1177/0146621606289485

    • Dunn, KJ., McCray, G. The place of the bifactor model in confirmatory factor analysis investigations into construct dimensionality in language testing. Frontiers in psychology. 2020 Jul 17;11:1357.

    https;//doi.org/ 10.3389/fpsyg.2020.01357

    • DeMars, CE. A tutorial on interpreting bifactor model scores. International journal of testing. 2013 Oct 1; 13(4): 354-78.

    https://doi.org/10.1080/15305058.2013.799067

    • Bonifay, WE., Reise, SP., Scheines, R., Meijer, RR. When are multidimensional data unidimensional enough for structural equation modeling? An evaluation of the DETECT multidimensionality index. Structural Equation Modeling: A Multidisciplinary Journal. 2015 Oct 2; 22(4): 504-16.

    https://doi.org/10.1080/10705511.2014.938596

    • Reise, SP., Bonifay, WE., Haviland, MG. Scoring and modeling psychological measures in the presence of multidimensionality. Journal of personality assessment. 2013 Mar 1; 95(2): 129-40. https://doi.org/1080/00223891.2012.725437
    • Revelle, W., Zinbarg, RE. Coefficients alpha, beta, omega, and the glb: Comments on Sijtsma. Psychometrika. 2009 Mar; 74: 145-54.

    https://doi.org/10.1007/s11336-008-9102-z

    • Zinbarg, RE., Revelle, W., Yovel, I., Li, W. Cronbach’s α, Revelle’s β, and McDonald’s ω H: Their relations with each other and two alternative conceptualizations of reliability. psychometrika. 2005 Mar; 70: 123-33.

    https://doi.org/10.1007/s11336-003-0974-7

    • Sellbom M, Tellegen A. Factor analysis in psychological assessment research: Common pitfalls and recommendations. Psychological assessment. 2019 Dec; 31(12): 1428.

    https://doi.org/10.1037/pas0000623

    • Stucky, BD., Edelen, MO., Vaughan, CA., Tucker, JS., Butler, J. The psychometric development and initial validation of the DCI-A short form for adolescent therapeutic community treatment process. Journal of Substance Abuse Treatment. 2014 Apr 1; 46(4): 516-21.

    https://doi.org/10.1016/j.jsat.2013.12.005

    • Stucky, BD., Thissen, D., Orlando, Edelen, M. Using logistic approximations of marginal trace lines to develop short assessments. Applied Psychological Measurement. 2013 Jan; 37(1): 41-57. https://doi.org/1177/0146621612462759
    • Liu, X., Cao, P., Lai, X., Wen, J., Yang, Y. Assessing essential unidimensionality of scales and structural coefficient bias. Educational and Psychological Measurement. 2023 Feb; 83(1): 28-47. https://doi.org/1177/00131644221075580
    • Dueber, DM. Bifactor Indices Calculator: A Microsoft Excel-based tool to calculate various indices relevant to bifactor CFA models. https://doi.org/10.13023/edp.tool.01[Also available athttp://sites.education.uky.edu/apslab/resources/]
    • Savalei, V., Reise, SP. Don’t forget the model in your model-based reliability coefficients: A reply to McNeish. Collabra: Psychology, 2019; 5(1): 36. https://doi.org/1525/collabra.247
    • Reise, SP., Morizot, J., Hays, RD. The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research, 2007 Aug; 16: 19-31.

    https://doi.org/10.1007/s11136-007-9183-7

    • Ten, Berge, JM., Sočan, G. The greatest lower bound to the reliability of a test and the hypothesis of unidimensionality. Psychometrika, 2004 Dec; 69: 613-25.

    https://doi.org/10.1007/BF02289858

    • Muthén, B., Kaplan, D., Hollis, M. On structural equation modeling with data that are not missing completely at random. Psychometrika, 1987 Sep; 52(3): 431-62.

    https://doi.org/10.1007/BF02294365

    • Cai, L. A two-tier full-information item factor analysis model with applications. Psychometrika. 2010 Dec; 75(4): 581-612.

    https://doi.org/10.1007/s11336-010-9178-0

    • Hancock, GR., Mueller, RO. Rethinking construct reliability within latent variable systems. Structural equation modeling: Present and future. 2001; 195(216): 60-70.

    https://www.researchgate.net/profile/Gregory-Hancock-2/publication/312447691_Rethinking_construct_reliability_within_latent_variable_systems/links/5f845c66a6fdccfd7b5adb55/Rethinking-construct-reliability-within-latent-variable-systems.pdf

    • Savahl, S., Casas, F., Adams, S. Considering a Bifactor Model of children’s Subjective Well-being using a multinational sample. Child Indicators Research. 2023 Dec; 16(6): 2253-78. https://doi.org/1007/s12187-023-10058-6
    • Gorsuch, RL. Factor analysis: Classic edition. Routledge; 2014 Nov 27.

    https://doi.org/10.4324/9781315735740

    • Dueber, DM. Bifactor Indices Calculator: A Microsoft Excel-based tool to calculate various indices relevant to bifactor CFA models. https://doi.org/10.13023/edp.tool.01[Also available at http://sites.education.uky.edu/apslab/resources/
    • Farahani, Hojjatollah., Roshan Chesli, Rasoul. Essentials for Developing and Validating Psychological Scales: Guide to Best Practices. Clinical psychology and personality, 2019; 17(2):197-212.

    https://doi.org/‌10.22070/cpap.2020.2917

    [In Persian]